Phase-controlled synthesis of nickel silicide nanostructures

Xing Fan, Xia Zhang, Xing Du, Demi Yang

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright
Challenges in synthesizing carbon-coated LiFePO₄ nanoparticles from hydrous FePO₄ and their electrochemical properties

Seunghoon Nam, Sungun Wi, Changwoo Nahm, Hongsik Choi, Byungwoo Park *

WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 151-744, Republic of Korea

A R T I C L E I N F O

Article history:
Received 6 March 2012
Accepted 29 June 2012
Available online 13 July 2012

Keywords:
A. nanostructure
B. inorganic compound
C. chemical synthesis
D. electrochemical properties

A B S T R A C T

Carbon-coated LiFePO₄ nanoparticles are obtained from a polymer-coated hydrous FePO₄ which is synthesized via the in situ polymerization of aniline. The difficulty in synthesizing a pure LiFePO₄ phase comes from achieving the exact stoichiometry between the added Li source and hydrous polyaniline-coated FePO₄. It is important to consider the amount of residual H₂O and polyaniline in FePO₄ to achieve the exact stoichiometry of Li vs. Fe. The phase impurities induced by inappropriate amount of Li severely deteriorate the electrochemical performance of C-coated LiFePO₄. On the other hand, the carbon-encapsulated LiFePO₄ nanoparticles with the exact amount of Li show a capacity of ~145 mAh g⁻¹ at 5 C, and exhibit a capacity of 170 mAh g⁻¹ for 250 cycles at 0.1 C which is nearly theoretical value.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Since LiFePO₄ was first reported as a potential cathode material in Li-ion batteries [1], it has given rise to a great deal of excitement, as well as controversy, in the research community. The most interesting fact is that LiFePO₄ has the obvious advantage of being composed of safe and inexpensive materials [2–5]. This LiFePO₄ belongs to the group of materials so called an olivine structure in which phosphorous ions occupy the tetrahedral sites with Fe³⁺ and Li⁺ in two distinct octahedral sites in a hexagonal array of oxygen ions [1].

It is obvious that the low electronic conductivity of LiFePO₄ (<10⁻⁸ S cm⁻¹ at ambient temperature) [6] may limit its application, so intensive work has been done to develop nanostructures in which its electronic conduction can be enhanced either by the presence of an electronic conductor or the doping of foreign atoms [7–13]. The method of incorporating carbon includes mixing the active LiFePO₄ materials with carbon, or adding polymer additives which are subsequently carbonized by calcination [14–19]. Carbon-coated LiFePO₄ with polymer additives has the extra advantage of having a reduced particle size because the polymers or carbon near the LiFePO₄ prevent particle growth during the crystallization of LiFePO₄. Smaller particle size of active material enables a rapid diffusion of Li⁺, and diffusivity of Li⁺ has also been a subject of extensive study [20]. Merely mixing the polymer additives with the active materials, however, does not insure the proper encapsulation of carbon for electronic percolation. The resulting morphology may become a composite material with carbon, as opposed to completely encapsulated LiFePO₄. In this respect, Wang et al. [21] reported that completely C-coated LiFePO₄ can be achieved from Fe³⁺ salts via the in situ polymerization of aniline [22].

When adding an Li source to FePO₄, however, there is some difficulty in achieving the exact stoichiometry of Li to Fe (1:1 molar ratio), because FePO₄ undergoes a hydrothermal synthesis with aniline, and the resulting FePO₄ is a hydrated form of iron phosphate (FePO₄·2H₂O) [23]. Herein, we explain the challenges involved, along with experimental details, and show that C-coated LiFePO₄ with the exact amount of Li exhibits excellent electrochemical performances. The effect of excessive Li which may be caused by the uncertain stoichiometry of Li to Fe is also discussed in this report.

2. Experimental procedure

The in situ polymerization method was adopted to synthesize polyaniline-coated FePO₄ nanoparticles using FeCl₃, NH₄H₂PO₄ and aniline (C₆H₇NH₂) in D. I. water as reported elsewhere [21,22]. The resulting water solution contained polyaniline-coated FePO₄. A vacuum filter with a ~50 nm-pore membrane was used to collect the precipitates. After filtering, the obtained greenish powder was dried under vacuum overnight. Li acetate (CH₃COOLi) was added to the obtained FePO₄, and following the two-step heat treatment was carried out for synthesis of LiFePO₄ under a reductive
atmosphere (Ar/H₂). Transmission electron microscopy (TEM, JEM-300F: JEOL) was performed at an accelerating voltage of 300 kV. For the TEM analysis, a small amount of C-coated LiFePO₄ was dispersed in ethanol via sonication. The resulting solutions were dropped on an amorphous-carbon-coated copper grid, and dried in an oven before the analysis. The amount of residual water and polyaniline in the polyaniline-coated FePO₄ were investigated by thermo gravimetric analysis (TGA; Q-5000 IR, TA instruments) under a dry air flow from RT to 750 °C.

Cycling tests were performed using coin-type half cells (2016 type) with a Li counter electrode. The working electrode consisted of the active material, super P carbon black, and a polyvinylidene fluoride binder at a weight ratio of 8:1:1. One mole of LiFePO₄ in ethylene carbonate/diethylene carbonate (1/1 vol.%) (Cheil Industries Inc.) was used as the electrolyte. The cells were cycled between 2.0 V and 4.3 V after the first discharge from the initial open-circuit voltage. The pure LiFePO₄ phase was tested from 0.1 C to 5 C rate (1 C = 170 mA g⁻¹, based on the theoretical capacity of LiFePO₄).

3. Results and discussion

Fig. 1 shows the TGA analysis of the polyaniline-coated FePO₄ nanoparticles under air. The weight loss is due to the residual water and oxidation of polyaniline. The weight loss of ~19 wt.% before 200 °C indicates that the FePO₄ nanoparticles are in the hydrated form (2H₂O/FePO₄ 2H₂O = 19.27 wt.%) [23]. It cannot be excluded, however, that some residual water is also present with the nanoparticles, and the amount of polyaniline is approximately 3 wt.% [21]. Therefore, these considerations should be taken into account when attempting to add a stoichiometric amount of Li source. Since the synthesis of polyaniline-coated FePO₄ involves hydrothermal conditions, the presence of some residual water is inevitable, even after drying, and this will affect the phase purity of the resulting C-coated LiFePO₄.

The X-ray diffraction patterns of the C-coated FePO₄ nanoparticles prepared with different amounts of Li source are presented in Fig. 2. The diffraction peaks are indexed to olivine-type LiFePO₄ with the space group, Pnma (62) (JCPDS #40-1499) for Li/Fe = 1.00, but several impurity phases are detected with increasing amount of excess Li. The average grain size of LiFePO₄ with a stoichiometric amount of Li was estimated by the Scherrer equation [24–26], and calculated to be ~40 nm, which is consistent with the TEM data

Fig. 1. Thermo-gravimetric analysis of the polyaniline-coated FePO₄ nanoparticles under air. The weight loss of ~22 wt.% is due to the residual water and oxidation of polyaniline.

Fig. 2. X-ray diffraction patterns of the C-coated LiFePO₄ nanoparticles with different molar ratio of Li to Fe. The ideal peak positions and intensities for LiFePO₄ (red), Li₅PO₄ (green), and Fe (blue) are marked at the bottom, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Voltage profiles for the C-coated LiFePO₄ nanoparticles at the 50th cycle with different molar ratio of Li to Fe. All of the cells were cycled between 2.0 V and 4.3 V at 0.1 C rate.

Fig. 4. Voltage profiles for the C-coated LiFePO₄ nanoparticles (Li/Fe = 1.00) at different current densities. All of the cells were cycled between 2.0 V and 4.3 V from 0.1 C to 5 C rate for 10 cycles each.
(in the following Fig. 5). The pure LiFePO$_4$ phase does not occur until \sim22 wt.% of weight of the polyaniline-coated FePO$_4$ nanoparticles is subtracted to achieve the exact molar ratio of Li to Fe. To obtain a pure LiFePO$_4$ phase, therefore, the amount of water and polyaniline should be taken into account when adding Li source prior to the heat treatment. Otherwise, the LiFePO$_4$ nanoparticles synthesized with excessive Li contain Li$_3$PO$_4$ and probable metallic Fe phases induced during the heat treatment. The uncertain amount of residual water in the FePO$_4$ nanoparticles results in poor reproducibility because even a small deviation from the stoichiometric amount of Li causes the impurity phases to grow during high temperature sintering (700 °C for 15 h). Therefore, preheat treatment should be carried out above 350 °C for the polyaniline-coated FePO$_4$ nanoparticles to eliminate the residual water, as our group [23] reported an anhydrous FePO$_4$ from a crystalline FePO$_4$·2H$_2$O by calcination at \sim400 °C.

As expected, the impurity phases resulting from nonstoichiometric molar ratio of Li to Fe severely deteriorate the electrochemical performance of the C-coated LiFePO$_4$, as shown in Fig. 3. The more impurities the C-coated LiFePO$_4$ nanoparticles contain, the lower the specific capacities of the active materials [27,28]. It has been reported that when some Li-containing phases such as Li$_3$PO$_4$ are present on the surface of LiFePO$_4$, the impurities enhance the Li$^+$ diffusion across the interface [29]. However, this is not the case in our experiments because the reported Li-containing phases are amorphous, and only exist on the surface [29]. The C-coated LiFePO$_4$ with Li/Fe = 1.30 shows only a capacity of \sim80 mAh g$^{-1}$ at 0.1 C, as opposed to pure LiFePO$_4$ phase which exhibits nearly theoretical capacity of 170 mAh g$^{-1}$ at the same current rate.

The results shown in Fig. 4 demonstrate the excellent electrochemical properties of the C-coated LiFePO$_4$ nanoparticles compared to the previously reported LiFePO$_4$/C [30,31]. The C-coated LiFePO$_4$ nanoparticles with a stoichiometric amount of Li lead to no apparent secondary phases, exhibiting an impressive capacity of \sim145 mAh g$^{-1}$ even at 5 C rate. When a significant amount of impurity phases such as Li$_3$PO$_4$ is detected by XRD, they definitely reduce the specific capacity of LiFePO$_4$.

The TEM images in Fig. 5 were obtained from the C-coated LiFePO$_4$ nanoparticles with an exact amount of Li, and the presence of single crystalline LiFePO$_4$ nanoparticles was confirmed by electron diffraction. The carbon shell with a thickness of 3–4 nm, which carbonized from polyaniline, is easily seen in the image. The amount of carbon materials is approximately 10 wt.%, as estimated by elemental analysis (by CHNS).

The pure C-coated LiFePO$_4$ nanoparticles insure not only a well-defined electronic connection between the active particles, but also facile Li$^+$ diffusion due to their small particle size (\sim40 nm by TEM). As a result, the capacity stays almost the same over 250 cycles. The cycling stability and Coulombic efficiency (the fraction of the prior capacity at charge which is available during the following discharge) of the C-coated LiFePO$_4$ at 0.1 C rate are shown in Fig. 6.

![Fig. 5. TEM images of C-coated LiFePO$_4$ nanoparticles (Li/Fe = 1.00) after heat treatment. The inset images are the diffraction patterns showing a single LiFePO$_4$ phase. The coated carbon shell is highlighted with arrows.](image)

![Fig. 6. Cycle-life performances (black) and Coulombic efficiency (red) of C-coated LiFePO$_4$ nanoparticles (Li/Fe = 1.00) at 0.5 C rate. The cells were cycled between 2.0 V and 4.3 V for 250 cycles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)](image)

4. Conclusions

Carbon-coated LiFePO$_4$ nanoparticles are synthesized from polyaniline-coated FePO$_4$ followed by calcination for proper carbonization. The hydrothermal synthesis of the FePO$_4$ nanoparticles causes some residual water and impurity phases to be present due to the difficulty in achieving the exact stoichiometry between Li and FePO$_4$. The impurity phases induced by inappropriate amount of Li severely deteriorate the electrochemical performance of the C-coated LiFePO$_4$ nanoparticles. The carbon-coated LiFePO$_4$ with the exact amount of Li, however, shows an excellent capacity of \sim145 mAh g$^{-1}$ at 5 C, and exhibits a capacity of 170 mAh g$^{-1}$ for 250 cycles at 0.1 C, which is close to the theoretical value.
Acknowledgments

This research was supported by the National Research Foundation of Korea Grant funded through the Korean Government (MEST: NRF, 2011-0030318) and the World Class University (WCU, R31-2008-000-10075-0).

References

Challenges in synthesizing carbon-coated LiFePO₄ nanoparticles from hydrous FePO₄ and their electrochemical properties

Seungheon Nam, Sungun Wi, Changwoo Nahm, Hongsik Choi, Byungwoo Park

Graphical abstract

Highlights

- Residual H₂O and polyaniline are accounted for exact stoichiometry of Li vs. Fe.
- Carbon-encapsulated LiFePO₄ exhibits 170 mAh g⁻¹ for 250 cycles at 0.1 C.
- The pure C-coated LiFePO₄ nanoparticles show a capacity of 145 mAh g⁻¹ at 5 C.

Morphology-controlled synthesis of hierarchical ball flower metallic Co superstructures and their thermal catalytic property

Shi-Kuo Li, Fang-Zhi Huang, Xiang Guo, Xue-Rong Yu, Chen Ly, Yu-Hua Shen, An-Jian Xie

Graphical abstract

Highlights

- Ball-flower Co superstructures is synthesized by a simple hydrothermal route.
- Sizes of the nanosheets on ball-flowers can be controlled by adjusting pHF amounts.
- The as-obtained Co present an excellent catalytic property to decomposition of AP.