The effect of nitrogen on the cycling performance in thin-film Si$_{1-x}$N$_x$ anode

Donggi Ahn, Chunjoong Kim, Joon-Gon Lee, Byungwoo Park*

Department of Materials Science and Engineering, and Research Center for Energy Conversion and Storage, Seoul National University, Seoul 151-744, Republic of Korea

A R T I C L E I N F O

Article history:
Received 11 December 2007
Accepted 29 April 2008
Available online 10 May 2008

Keywords:
Si–N alloy
Anode
Thin film
Li-ion battery

A B S T R A C T

The effects of nitrogen on the electrochemical properties of silicon–nitrogen (Si$_{1-x}$N$_x$) thin films were examined in terms of their initial capacities and cycling properties. In particular, Si$_{0.3}$(N$_{0.4}$)$_{24}$ thin films showed negligible initial capacity but an abrupt capacity increase to ~2300 mA h/g after ~650 cycles. The capacity of pure Si thin films was deteriorated to ~20% of the initial level after 200 cycles between 0.02 and 1.2 V at 0.5 C (1 C = 4200 mA/g), whereas the Si$_{0.3}$(N$_{0.4}$)$_{24}$ thin films exhibited excellent cycle-life performance after ~650 cycles. In addition, the Si$_{0.3}$(N$_{0.4}$)$_{24}$ thin films at 50 °C showed an abrupt capacity increase at an earlier stage of only ~30 cycles. The abnormal electrochemical behaviors in the Si$_{0.3}$(N$_{0.4}$)$_{24}$ thin films were demonstrated to be correlated with the formation of Li$_3$N and Si$_3$N$_4$.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, research on lithium-ion batteries with higher energy density and better cycle-life performance has become critical with the development of portable electronics and hybrid electric vehicles. The theoretical capacity of the commercially used graphite anode (372 mA h/g for LiC$_6$) is insufficient to satisfy the energy demands. The use of silicon and several metals as a high-capacity anode have been investigated to alloy lithium with a high molar ratio [1–5]. However, these materials show poor capacity retention due to the serious volume change with lithium alloying/dealloying. Recently, various metal composites, metal oxides, and metal sulfides have also been studied extensively based on their transformations to lithium-metal alloys [6–10].

As alternatives, nitrides (Cu$_3$N, Ni$_3$N, Co$_3$N, Fe$_3$N, SiSn$_{0.87}$O$_{1.22}$, etc.), have been investigated to improve the cycle-life performance and elucidate their electrochemical mechanisms [11–14]. These nitrides may undergo conversion reactions that lead to the formation of Li$_3$N and metal (M):

$$M_N + 3yLi^+ + 3ye^- \rightarrow xM + yLi_3N \quad (1)$$

$$M + zLi^+ + ze^- \rightarrow Li_2M \quad (2)$$

Among the few reports on silicon nitrides, investigated due to the large specific capacity of silicon (4200 mA h/g for Li$_4$Si), the ground Si$_3$N$_4$ powders exhibited a relatively poor capacity of ~40 mA h/g despite the expectation that Si$_3$N$_4$ would convert Si and Li$_3$N in reaction with lithium [15].

In this study, we examined the electrochemical properties of Si$_{1-x}$N$_x$ thin films as a negative electrode. The motivation of this work was to fabricate well-dispersed nanocomposites of silicon, silicon nitride, and lithium nitride from the initial silicon–nitrogen alloy, while maintaining the large capacity of silicon, the mechanical stability of Si$_3$N$_4$, and the high Li-ion conductivity of Li$_3$N.

2. Experimental

Amorphous Si$_{1-x}$N$_x$ thin films were deposited using a Si target (2-in. diameter) by rf magnetron sputtering at 200 °C, with a typical deposition rate of 10 nm/min. The substrate was a copper foil as a current collector for the electrochemical analysis. Prior to the Si$_{1-x}$N$_x$ deposition, the copper foils were etched with acetic acid (99.7%) to remove copper oxide or any surface impurities, and then pre-annealed at ~200 °C in the sputtering chamber under vacuum [21,22]. The film thickness was confirmed by scanning electron microscopy (SEM: JSM-6330F, JEOL), and the elemental analysis was performed using a carbon, hydrogen, nitrogen, and sulfur (CHNS) instrument (Flash EA 1112, CEI).

The electrochemical properties of 200 nm-thick amorphous Si$_{1-x}$N$_x$ thin films were examined. Beaker-type half-cells were used to evaluate the electrochemical properties of the Si$_{1-x}$N$_x$ thin films. The electrochemical cells were comprised of Li metal sheets as the counter and reference electrode, Si$_{1-x}$N$_x$ thin films (1-cm diameter) as the working electrode, and 1 M LiPF$_6$ in ethylene carbonate/diethyl carbonate (EC/DEC: 1/1 vol.%) (Cheil Industries, Inc.) as the electrolyte. The cells were discharged from the initial open-circuit voltage to 0.02 V, and cycled over the voltage range of 0.02 and 1.2 V at a current rate of 0.5 C (1 C = 4200 mA/g).
The chemical-bond states of the Si$_{1-x}$N$_x$ thin films with charged/discharged state were analyzed by X-ray photoelectron spectroscopy (XPS: AXIS, Kratos) with MgK$_\alpha$ radiation.

3. Results and discussion

Fig. 1 shows the nitrogen effect on the cycle-life performance of Si$_{1-x}$N$_x$ (x = 0, 0.24, 0.41) thin films between 0.02 and 1.2 V at 0.5 C rate. In the pure Si thin films, most of the initial capacity of \sim3000 mAh/g is rapidly lost during cycling, and is reduced to \sim700 mAh/g (with a retention of \sim20%) at the 200th cycle. However, the Si$_{0.76}$N$_{0.24}$ thin films show a negligible initial capacity with a meager increasing rate over 645 cycles, but then an abrupt increase to the maximum charge capacity of \sim2300 mAh/g at the 750th cycle. In particular, the Si$_{0.76}$N$_{0.24}$ samples show the excellent cycle-life performance after the 750th cycle, while the Si$_{0.59}$N$_{0.41}$ thin films (Fig. 1c) exhibited negligible capacity during the whole 850 cycles.

The voltage profiles of the Si$_{0.76}$N$_{0.24}$ thin films are shown in Fig. 2. After a plateau at \sim0.03 V at the 646th discharge, the following cycles exhibit a smoothly sloped shape on the following cycles. Moreover, the polarization in charge and discharge get reduced after the 647th cycle.

The Si 2p and N 1s XPS spectra for the as-deposited and discharged/charged (0.02 V/1.2 V) states, after the abrupt capacity increase at the 646th cycle, are shown in Fig. 3. The peak positions marked are the binding energies for Si 2p of Si$_3$N$_4$ (101.8 eV) and Si (99.3 eV), and those for N 1s of Si$_3$N$_4$ (397.4 eV) and Li$_3$N (403.1 eV) [23]. In the as-deposited Si$_{0.76}$N$_{0.24}$ thin films, the binding energies of Si 2p and N 1s are \sim101 and \sim397 eV, respectively, which is attributed to the solid solution of silicon and nitrogen.

After the abrupt capacity increase, the Si$_{0.76}$N$_{0.24}$ samples at the 0.02 V discharged state show a broadened Si 2p peak composed of Si$_3$N$_4$ and Si, and the N 1s peaks attributed to Si$_3$N$_4$ and Li$_3$N. The electrochemical reaction of Si–N alloy with lithium yields the evolution of Li–Si alloy, Li$_3$N, and Si$_3$N$_4$. Since Li$_3$N is one of the best lithium-ion conducting compounds (D_L \approx 10$^{-4}$S/cm at RT and D_L \approx 10$^{-3}$ cm2/s at 500 °C) [16–20], it seems that the Li$_3$N generated during cycling in the Si$_{0.76}$N$_{0.24}$ thin films enhances the kinetics of the Li–Si alloying/dealloying.

At the 1.2 V charged state, the decrease in the N 1s peak for Li$_3$N and the increase for Si$_3$N$_4$ may be attributed to the partial decomposition of Li$_3$N at the charged state. While the exact phase evolutions cannot be determined from XPS, the integrated-intensity ratios of Si$_3$N$_4$/Li$_3$N are approximately 30:40:30 and 20:65:15, respectively, at 0.02 and 1.2 V. The partial decomposition of Li$_3$N at 1.2 V may increase the Si$_3$N$_4$ XPS fraction, even with the non-stoichiometric compounds, such as SiN$_x$ and LiN$_y$, and the difficulty in separation of Si and Li–Si alloy from XPS. The decomposition and formation of Li$_3$N have been reported in the electrochemical reaction of lithium with metal nitrides [12,24].

After the abrupt capacity increase, theSEM images of the Si$_{0.76}$N$_{0.24}$ thin films for discharged/charged (0.02 V/1.2 V) states indicate typical island structures and crack morphologies on the Cu-foil substrates, as shown in Fig. 4. It has been reported that the island structures on the Cu foils reduced the stress that arises...
from volume expansion/contraction during cycling (312% volume increase from Si to Li\textsubscript{4.4}Si) [25,26]. In the Si\textsubscript{0.76}N\textsubscript{0.24} thin films, the formation of Si\textsubscript{3}N\textsubscript{4} and Li\textsubscript{3}N which act as matrices that surround active Si grains may improve the cycle-life performance because Li\textsubscript{3}N and mechanically stable Si\textsubscript{3}N\textsubscript{4} maintain the integrity of Si grains against the large volume change with lithium alloying/dealloying.

The electrochemical reactions in the Si\textsubscript{0.76}N\textsubscript{0.24} thin films should depend on the kinetics of Li\textsubscript{3}N formation. The cycle-life performance of the Si\textsubscript{0.76}N\textsubscript{0.24} thin films are tested at 25 °C and 50 °C, as shown in Fig. 5. Although cycling test at 25 °C shows an abrupt capacity increase after 645 cycles, cycling at 50 °C exhibits comparable capacity increase after only 34 cycles. Also, several different Si\textsubscript{0.76}N\textsubscript{0.24} samples reproducibly exhibited the abrupt increases of capacities in the range of 400–650 and 30–55 cycles, respectively, at 25 °C and 50 °C, which are attributed to the enhanced formation of the ionic conductor (Li\textsubscript{3}N) at the elevated temperature.

4. Conclusions

The effects of nitrogen on the electrochemical properties of Si\textsubscript{1-x}N\textsubscript{x} thin films were studied. The Si–N alloyed thin films exhibited an enhanced cycle-life performance compared with that of pure Si thin films. In particular, the Si\textsubscript{0.76}N\textsubscript{0.24} thin films at 25 °C showed the negligible capacity during ~650 cycles followed by an abrupt capacity increase to ~2300 mAh/g, while the electrochemical performance at 50 °C increased abruptly after only ~30 cycles. Furthermore, the Si\textsubscript{0.59}N\textsubscript{0.41} thin films exhibited negligible capacity over the complete 850-cycle range. The abnormal electrochemical behaviors were correlated with the formation of Li\textsubscript{3}N (for lithium-ion conductor) and Si\textsubscript{3}N\textsubscript{4} (for mechanical stability) during cycling. Further studies will be needed to identify the phases and nanostructures of Li\textsubscript{3}N and Si\textsubscript{3}N\textsubscript{4} in the Si–N alloyed thin films.

Acknowledgment

This work was supported by the ERC Program of MOST/KOSEF (R11-2002-102-00000-0).

References

Electromagnetic transport properties and magnetoresistance of La$_{0.7}$Ca$_{0.2}$Sr$_{0.1}$MnO$_3$–Ag composites prepared by electroless process
C.S. Xiong, Y.F. Cui, Y.H. Xiong, H.L. Pi, X.C. Bao, Q.P. Huang, Y. Zeng, F.F. Wei, C.F. Zheng and J. Zhu
Page 2123

Magnetic field dependence of the MR for the composites at 298 K. The inset is the different silver-plating time dependence of the variation of MR at 2 T.

Hydrothermal synthesis of antimony oxychloride and oxide nanocrystals: Sb$_4$O$_5$Cl$_2$, Sb$_8$O$_{11}$Cl$_2$, and Sb$_2$O$_3$
Xiang Ying Chen, Hyun Sue Huh and Soon W. Lee
Page 2127

We described herein a facile solution-phase route to three nanocrystals of antimony oxychlorides and oxides (Sb$_4$O$_5$Cl$_2$, Sb$_8$O$_{11}$Cl$_2$, and Sb$_2$O$_3$). In particular, the solvent composition controlled the selective preparation of cubic Sb$_2$O$_3$ (senarmontite) and orthorhombic Sb$_2$O$_3$ (valentinite).

Wet chemical synthesis and photocatalytic activity of potassium niobate K$_6$Nb$_{10.8}$O$_{30}$ powders
Gaoke Zhang, Yanjun Hu, Xinmiao Ding, Jin Zhou and Junwei Xie
Page 2133

The K$_6$Nb$_{10.8}$O$_{30}$ powders with TB-type structure were synthesized by a wet chemical method at lower temperature. The particle size of the as-prepared powders is much smaller than that of the sample by obtained solid-state method and its photocatalytic activity is much higher than that of the latter and slightly higher than that of P25-TiO$_2$.

The effect of nitrogen on the cycling performance in thin-film Si$_{1-x}$N$_x$ anode
Donggi Ahn, Chunjoong Kim, Joon-Gon Lee and Byungwoo Park
Page 2139

The Si$_{0.76}$N$_{0.24}$ thin films showed negligible initial capacity, but an abrupt capacity increase to ~2300 mA h/g after ~650 cycles, followed by excellent cycle-life performance. This abnormal electrochemical behavior was demonstrated to be correlated with the formation of Li$_3$N and Si$_3$N$_4$.